215 research outputs found

    Laminin: the crux of basement membrane assembly

    Get PDF
    Laminin-1 is emerging as the key molecule in early embryonic basement membrane assembly. Here we review recent insights into its functions gained from the synergistic application of genetic and structural methods

    Nascent Adhesions: From Fluctuations to a Hierarchical Organization

    Get PDF
    SummaryIntegrins assemble a complex network of molecular interactions at cell–matrix adhesion sites. Fluorescence correlation microscopy has now shed light on the spatial, temporal and numerical distributions of protein complexes during assembly and stabilization of nascent adhesions

    Improvement of reporter activity by IRES-mediated polycistronic reporter system

    Get PDF
    Many in vitro and in vivo applications for transgenesis require co-expression of heterologous genes. The use of internal ribosome entry sites (IRESs) in dicistronic expression vectors enables the expression of two genes controlled by one promoter in target cells or whole organisms. Here we describe the expansion of IRES exploitation to generate multicistronic vectors capable of expressing multiple reporter genes, especially to improve the fluorescence yield of autofluorescent reporter gene products such as green fluorescent protein (GFP). We found that the increase in fluorescence output of GFP is proportional to the number of IRES-GFP repeats in the multicistronic vector. At least four genes can be expressed from a multicistonic vector by using tandem IRES elements, with no significant alteration of the expression level of the cap-dependent translated gene. Moreover, gene expression under the control of multiple IRES element has no effect on the posttranscriptional regulation through 3′-untranslated regions (3′UTR). Thus, endogenous gene expression and regulation, especially those controlled by weak promoters, can be analyzed with our IRES-dependent polycistronic reporter gene expression system

    Integrins in invasive growth.

    Get PDF

    The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA–GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis

    Get PDF
    We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either α5β1 or αvβ3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, α5β1 but not αvβ3 supports high levels of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates αvβ3-mediated fibrillogenesis. Despite the fact that α5β1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of α5β1-mediated but not αvβ3-mediated focal contacts. Using chimeras of β1 and β3 subunits, we find that the extracellular domain of β1 controls RhoA activity. By expressing both β1 and β3 at high levels, we show that β1-mediated control of the levels of β3 is important for the distribution of focal contacts. Our findings demonstrate that the pattern of fibronectin receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions

    Genetic analysis of β1 integrin “activation motifs” in mice

    Get PDF
    Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin β cytoplasmic domains. Talin binding disrupts the salt bridge between the α/β tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the β1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished β1 integrin functions and led to a β1 integrin–null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the β1 integrin tail are essential for β1 integrin function, whereas tyrosine phosphorylation and the membrane-proximal salt bridge between α and β1 tails have no apparent function under physiological conditions in vivo

    Inhibition of fibronectin matrix assembly by the heparin-binding domain of vitronectin

    Get PDF
    The deposition of fibronectin into the extracellular matrix is an integrin-dependent, multistep process that is tightly regulated in order to ensure controlled matrix deposition. Reduced fibronectin deposition has been associated with altered embryonic development, tumor cell invasion, and abnormal wound repair. In one of the initial steps of fibronectin matrix assembly, the amino-terminal region of fibronectin binds to cell surface receptors, termed matrix assembly sites. The present study was undertaken to investigate the role of extracellular signals in the regulation of fibronectin deposition. Our data indicate that the interaction of cells with the extracellular glycoprotein, vitronectin, specifically inhibits matrix assembly site expression and fibronectin deposition. The region of vitronectin responsible for the inhibition of fibronectin deposition was localized to the heparin-binding domain. Vitronectin\u27s heparin-binding domain inhibited both β1 and non-β1 integrin-dependent matrix assembly site expression and could be overcome by treatment of cells with lysophosphatidic acid, an agent that promotes actin polymerization. The interaction of cells with the heparin-binding domain of vitronectin resulted in changes in actin microfilament organization and the subcellular distribution of the actin- associated proteins α-actinin and talin. These data suggest a mechanism whereby the heparin-binding domain of vitronectin regulates the deposition of fibronectin into the extracellular matrix through alterations in the organization of the actin cytoskeleton

    Mechanosensitivity and compositional dynamics of cell–matrix adhesions

    Full text link

    Kindlin-2 controls bidirectional signaling of integrins.

    Get PDF
    Control of integrin activation is required for cell adhesion and ligand-induced signaling. Here we report that loss of the focal adhesion protein Kindlin-2 in mice results in peri-implantation lethality caused by severe detachment of the endoderm and epiblast from the basement membrane. We found that Kindlin-2-deficient cells were unable to activate their integrins and that Kindlin-2 is required for talin-induced integrin activation. Furthermore, we demonstrate that Kindlin-2 is required for integrin outside-in signaling to enable firm adhesion and spreading. Our findings provide evidence that Kindlin-2 is a novel and essential element of bidirectional integrin signaling
    corecore